The ratio test is a tool used in calculus to determine the convergence or divergence of an infinite series. It states that if the limit of the absolute value of the ratio of consecutive terms of a series is less than 1, then the series converges. If the limit is greater than 1 or equals infinity, then the series diverges. If the limit is equal to 1, the test is inconclusive.
Mathematically, the ratio test can be stated as follows:
Given a series ∑an, if Lim |an+1/an| as n approaches infinity is equal to L, then:
The ratio test is particularly useful for series that contain factorials or exponential terms, as it provides a simple method for determining convergence. It is a powerful tool in calculus and is often used in combination with other convergence tests to determine the convergence or divergence of a series.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page